

Novel Deodorization Technology with Focus on Micronutrient Recovery in Soybean Oil

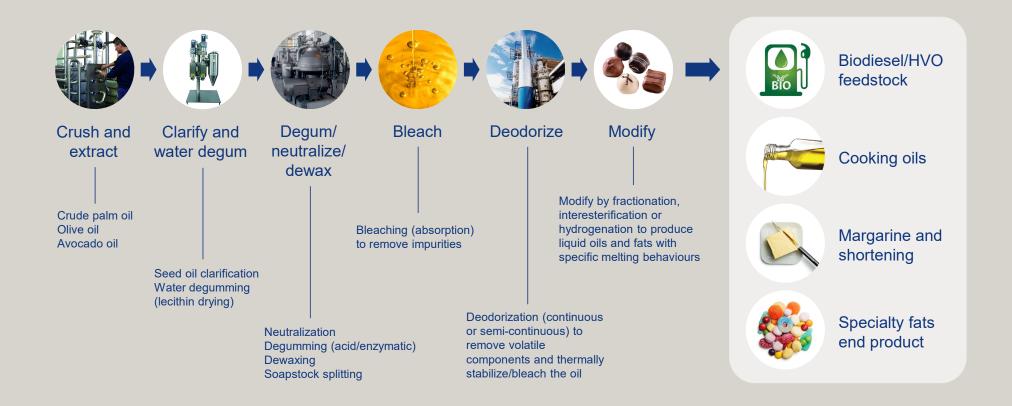
- International Soy Conclave, Oct. 7-8th, India

Dr. Ling Hua Alfa Laval Copenhagen A/S

Agenda

A short introduction to Alfa Laval's Oils & Fats portfolio

Alfa Laval's deodorization solutions


Micronutrients recovery solutions

Summary

Our Oils & Fats process line portfolio

1000L

- Comprehensive solutions

Alfa Laval's Deodorization solutions

Development of Alfa Laval deodorizing technology

1

- A commitment to continuous development

Packed column refining

- Since 1985
- Bulk quality palm oil
- Low operating cost

SoftColumn refining

- Since 1996
- Seed or palm oils
- High quality oils
- Flexibility retention time
- Low operating cost

Dual strip refining

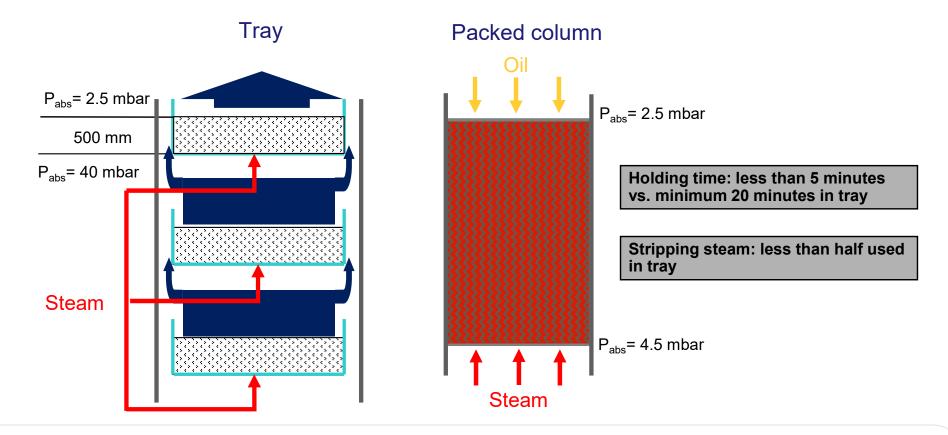
- Since 2009
- Flexibility in processing temperature
- With focus on low trans fat formation for seed oil
- Micronutrition and oil minor components removal

Palm

- Sind
- LowHigh
- Abil syst
- Flex
- Low

12/10/2023 | © Alfa Laval **Tray deodorizing**

Classified by Alfa Laval as: Business


_{6 |} www.alfalaval.

A glance back to SoftColumnTM deodorizer

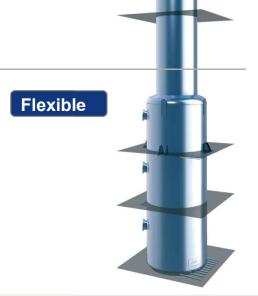
- Tray vs. Packed column

12/10/2023 | © Alfa Laval

A glance back to SoftColumnTM deodorizer

Physical separation process

Steam stripping
Control by steam and temperature


Removal of FFA and other volatiles

Chemical reaction process

Retention time Control by time and temperature

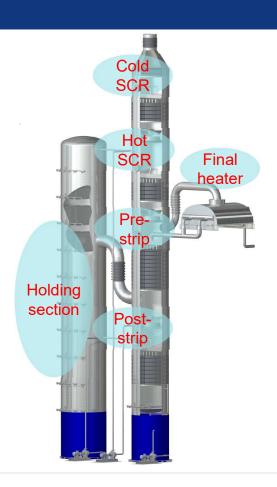
Deodorization/Heat bleaching

12/10/2023 | © Alfa Laval

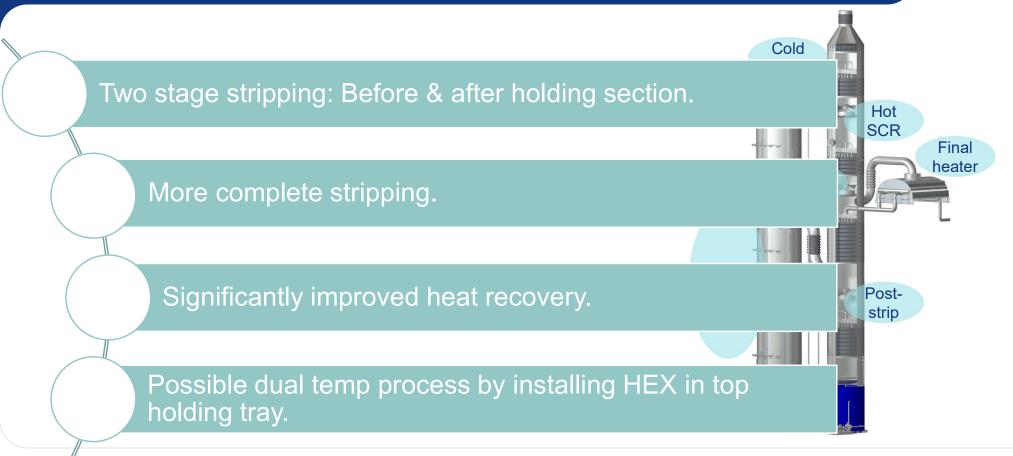
8 | www.alfalaval.

Fast

A glance back to SoftColumnTM deodorizer

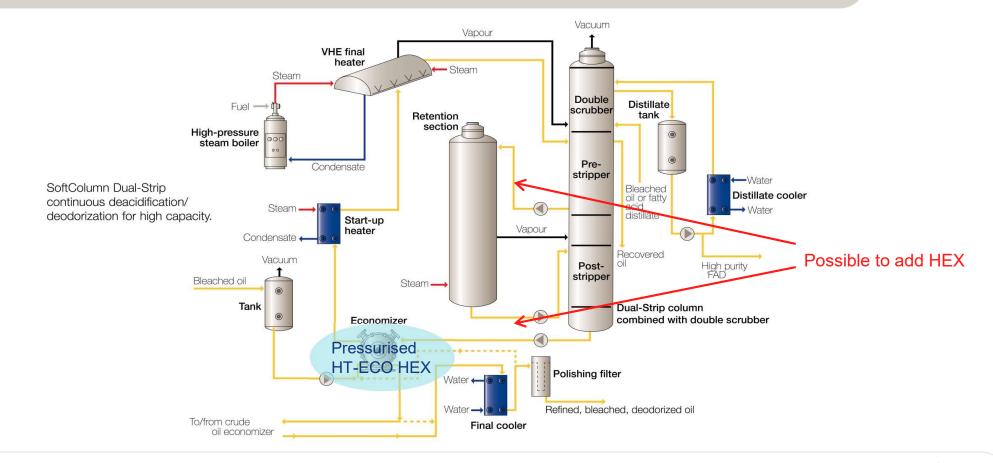


Dual Strip



- Two stage stripping: Before & after holding section.
- More complete stripping.
- Significantly improved heat recovery.
- Possible dual temp process by installing HEX in top holding tray.
- Possible retrofit solution.

Dual Strip



Dual Strip process overview

12/10/2023 | © Alfa Laval

Achieve the highest quality

- Consistent high-quality oil
- Flexibility in operating choices
- Low operating cost with high heat recovery
- Flexibility in plant layout
- Safe and easy operation and maintenance
- Modularized setup and easy upgrade

Micronutrients recovery solutions

Occurrence in crude oils

Toco's 1)	
-----------	--

T = tocopherols, TT = tocotrienols

	α-T*	в-т	y-T	δ-T	a-TT*	β-TT	y-TT	δ-TT	
palm	89		18	-	128	- 15	323	72	
soybean	100	8	1021	421	8	-			
maize	282	54	1034	54	49	8	161	6	
sunflower	670	27	11	1	20	12	20		
rapeseed	202	65	490	9	2	32	23		

Sterols 1)

	COITION	Cottoniseed	olive	pairii	rapeseeu	Samowei	Soybean	Sumower
cholesterol	-	-	11.	26	-	-	-	-
campesterol	2691	170	28	358	1530	452	720	313
stigmasterol	702	42	14	204	-	313	720	313
β-sitosterol	7722	3961	1310	1894	3549	1809	1908	2352
∆5-avenasterol	468	85	29	51	122	35	108	156
Δ7-stigmastenol	117	-	58	25	306	696	108	588
∆7-avenasterol	-	-	5	-		104	36	156
brassicasterol	-	-	27	-	612	-	-	2
other	-	-	50	-	-	69	-	39

133

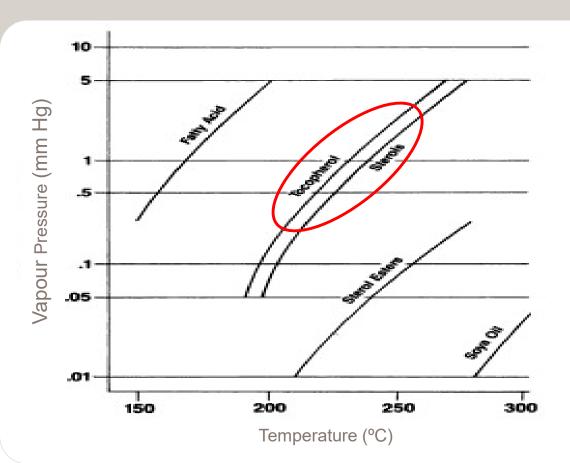
Squalene 2)

15 - 60% esterified

Corn oil^b 280 Olive oila 2 400 Olive oilb 3 830 Sesame oil^a 25 Sesame oil^b 50 Sunflower oil^a 15 Sunflower oilb 120 Safflower oila 29

Corn oil^a

Peanut oil® 123 Peanut oil^b 270 Soyabean oila 31 Soyabean oil^b 120 Shark liver oil $27x10^{4}$ Shark liver oild $71x10^{4}$ Crude palm oil^a 580 Crude palm oilb 588


2) Gapor MT, Hazrina AR. Squalene in oils and fats. Palm Oil Developments 2000; 32: 36-40; (Malaysian Palm Oil Board).

Silde

¹⁾ lipidlibrary.aocs.org

Pure component vapour pressures

12/10/2023 | © Alfa Laval

Squalene (estimated)						
Pressure	Temperature					
mmHg	оС					
0.05	184					
0.1	193					
0.5	217					
1	228					
5	255					

Reference: "Deodorizer Distillate Values and Uses in the Evolving Edible Oil Process", Winters, Robert L., p 154ff, Proceedings from World conference on emerging technologies in the fats and oil industry (1986)

Uses for micronutrients

Cl		Examples of use					
Class	Prominent sources	Food	Feed	Personal care & cosmetics **)			
Tocopherols	soybean oil	antioxidant (E 306)	antioxidant	antioxidant, masking, skin conditioning			
Tocotrienols	palm oil	antioxidant, but no E number	n/a	oral care, skin conditioning, UV absorber			
Sterols	soy, corn	food additive (functional), GRAS status *)	n/a	e.g. SOY STEROLS: Emulsifying, humectant, skin conditioning			
Squalene	shark liver oil, olive, ricebran and palm oils	?	n/a	Antistatic, emolient, hair conditioning, refatting, skin conditioning. Hydrogenated to squalane (more stable) as above, but not as antistatic			

^{*)} Generally Regarded As Safe, health claims being debated

^{**)} as per INCi (international Nomenclature Cosmetic Ingredient) classification.

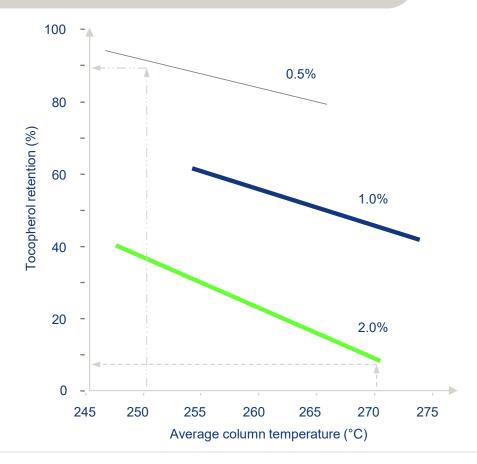
Distillate Composition

VODD types	FFAs	Acylglycerols	Tocopherols	Free phytosterols	FASEs	Squalene	Others ^b
SODD	73.8	7.67	7.51	6.32	4.45	0.65	N.A a
CODD	81.2	0.72	1.42	2.71	0.62	0.21	13.12
CODD	77.1	2.20	3.31	5.42	N.A	0.99	10.98
SuODD	70.82	3.33	1.28	3.67	0.09	1.00	19.81
SODD	57.80	N.A	8.97	N.A	N.A	N.A	N.A
SuODD	82.00	N.A	10.00	2.00	2.00	4.00	0

aNot available.

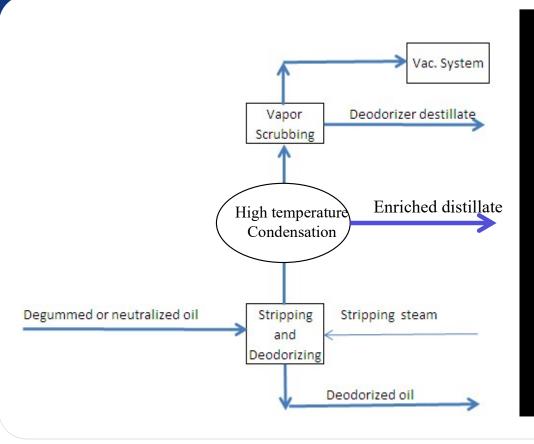
VO = Vegetable Oil, SO= Soybean Oil, ,CO = Corn Oil , SuO = Sunflower Oil, PFAD = Palm Oil Fatty Acid Distillate

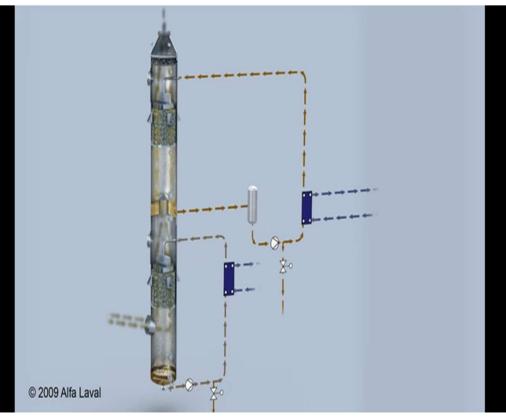
Reference: "Vegetable Oil Deodorizer Distillate: Characterization, Utilization and Analysis", Gunawan, S. and Yu, Y-H., Separation and Purification Reviews, p 207ff (2009)


^bHydrocarbons, aldehydes, ketones, pesticides, herbicides, breakdown product of tocopherols and phytosterols.

Unsaponifiables

- retention or removal?

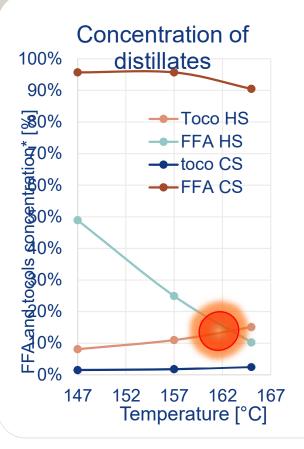

- Unique flexibility in final unsaponifiable concentration
- Example: tocopherol
 - 0.5% stripping steam
 - 1.0% stripping steam
 - 2.0% stripping steam

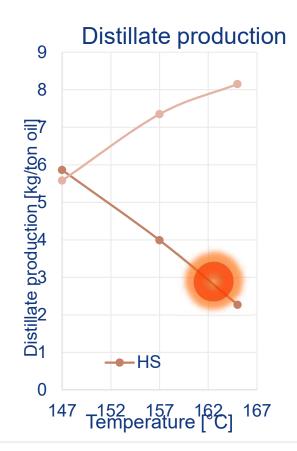


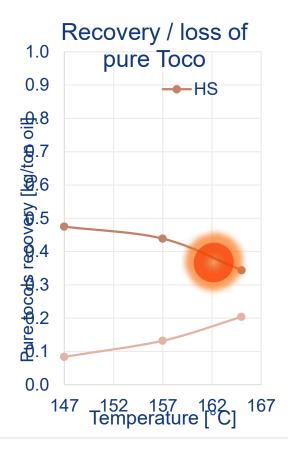
Double scrubber

ALFA LAVAL

- Adding a condensation zone






Tocopherol recovery in seed oil

- Actual plant data for Double Scrubber installation of circulating loop type

HS: Hot Scrubber CS: Cold Scrubber

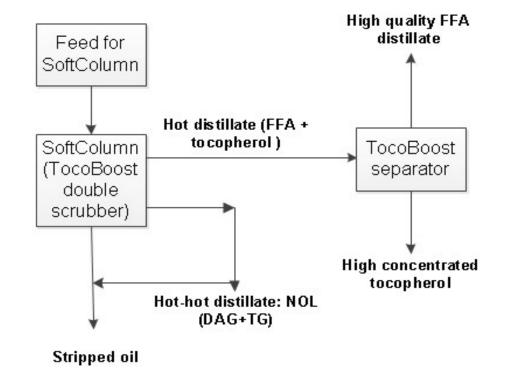
* FFA measured by titration based on MW 282

Tocol concentration / recovery dilemma

- The limitation / dilemma using Double Scrubber system
- The Double Scrubber, in principle being 2 simple condensation zones at high and low temperature, cannot "by nature" offer full separation between tocols and FFA.
- At low HSCR temp the tocols will be diluted with condensing FFA at high HSCR temp the tocols will not be fully condensed in HSCR (so passing to CSCR = loss).
- If really low tocols losses to CSCR are required, the obtained concentration resembles single scrubber performance, because most of fatty acids will be condensated in Hot Scrubber.
- The higher desired concentration, the higher losses of tocols to CSCR will take place.

TocoBoost®

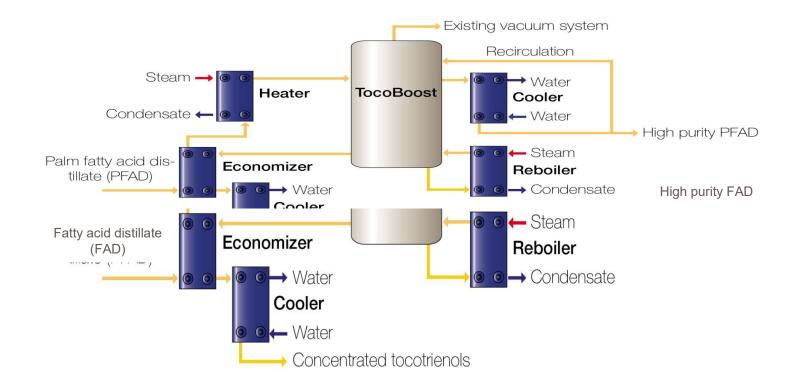
Increasing BOTH the Tocol recovery AND the concentration



Standard double scrubber

Cold distillate (fatty acids + to copherol losses) SoftColumn (standard double scrubber) Hot (tocopherol) distillate + NOL

12/10/2023 | © Alfa Laval


TocoBoost Technology

TocoBoost®

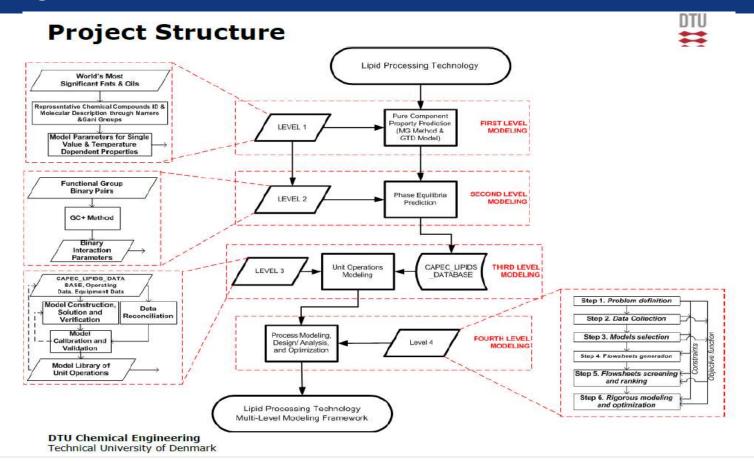
TALFAL LAVAL

- Example of stand-alone unit

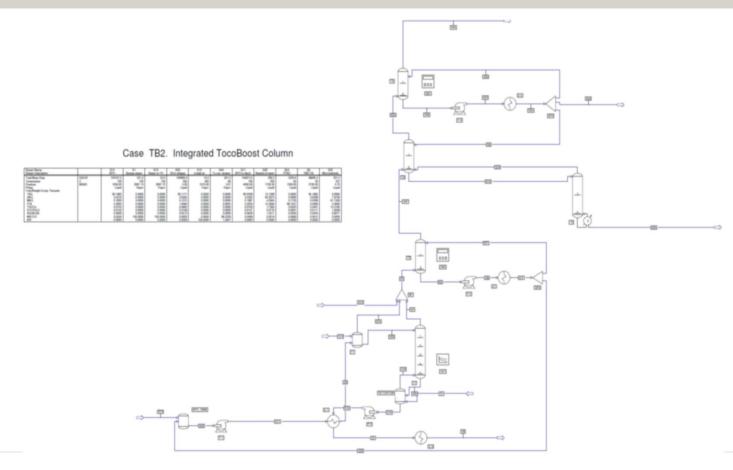
TocoBoost®

- Comparison with other configurations for soybean oil duty

Parameters	Tococontain, Single Scrubber	Tococontain, Double Scrubber	Tocostrip, Single Scrubber	TocoBoost technology*
Tocols concentration	3-7%	7-10%	6-14%	15+%
Tocols recovery [kg pure tocols / ton feed]	0.1-0.2	0.08-0.16	0.4-0.6	0.1-0.6
FFA ^a in FAD [%]	40-50	50-70	30-40	95+
Neutral oil loss [%]	0.1-0.2	0.1-0.2	0.1-0.2	<0.1


^{*}The TocoBoost design can be tailor-made to feed quality and desired separation, and the specific performance can be predicted by advanced modeling/simulation

Design tool


- Modeling activities anchored in "CAPEC" in Techn. Univ. of Denmark

Design tool

- Modeling the separation options: TocoBoost Integrated

Thank you for your attention!

www.alfalaval.com

© Alfa Laval

